
N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 92 | P a g e

Area efficient Short Bit Width Two’s Compliment Multiplier

Using CSA

N.V. Siva Rama Krishna .T
 #1

, K .Hari Kishore
*2

, K .Vinay Kumar
 #3

#1

Student of VLSI Systems Research Group, Department of Electronics and Communication Engineering, K L

University, Guntur, AP-INDIA
#2

ASSOC.Professor VLSI System Research Group, Department Of Electronics and Communication

Engineering, K L University, Guntur, AP – INDIA
#3

Student of VLSI Systems Research Group, Department of Electronics and Communication Engineering, K L

University, Guntur, AP-INDIA

Abstract
Two’s complement multipliers are important for a wide range of applications. In this project, we present a

technique to reduce by one row the maximum height of the partial product array generated by a radix-4

Modified Booth Encoded multiplier, without any increase in the delay of the partial product generation stage.

The proposed method can be extended to higher radix encodings, as well as to the proposed approach using

CSA to add partial products improve the performance by reducing area and delay; the results based on a rough

theoretical analysis and on logic synthesis showed its efficiency in terms of both area and delay. And we are

implementing this on CADENCE Platform in 180 nm technology. And using clock gating technique to reduce

further delay

Key words - Modified Booth Encoding, CSA-Carry Save Adder, partial product array

I. INTRODUCTION
The MAC(Multiplier and Accumulator Unit)

is used for image processing and digital signal

processing (DSP) in a DSP processor. Algorithm of

MAC is Booth's radix-4 algorithm, wallace tree, 4:2

CSA, 64bit carry select adder and improves speed.

MIPS was implemented as micro processors and

permitted high performance pipeline implementations

through the use of their simple register oriented

instruction sets. Although those algorithms (radix-4

algorithm, pipelining, etc) are widely used technique

for speeding up each part, the MAC on specific

processor cannot be run at 100% efficiency.

Due to the reasons of lower speed of MAC,

MIPS instruction "mul" (multiplication) takes longer

time than any other instruction in our MIPS

processor. To improve speed of MIPS, MAC needs to

be fast and MIPS must have special algorithm for

"mul" instruction. One of the method we chose was

to design multi-clock MAC instead of one-clock

MAC which improved the speed of MIPS. In general,

the instruction set of MIPS processor includes

complex works like multiplication and floating point

operation which has multi execution stage. Therefore,

system clock of the processor was increased

efficiently.We applied 2 stage pipelining to the MAC

to MIPS processor and as a result we were able to get

the result of matrix multiplication which was used.

Booth Encoding

The Booth encoding, or Booth algorithm,

was proposed by Andrew D. Booth in 1951 This

method can be used to multiply two two’s

complement number without the sign bit extension.

The operation of Booth encoding consists of two

major steps [2]: the first one is to take one bit of the

multiplier, and then to decide whether to add the

multiplicand according to the current and previous

bits of the multiplier. This encoding scheme is serial,

which means that the different value of the 2 bits

(current and previous bits) corresponds to the

different operations. The serial encoding scheme is

usually applied in serial multipliers. The operation

procedure can be described with the following table.

00: no arithmetic operation.

01: adding the multiplicand to the left half of the

product.

10: subtracting the multiplicand from the left half

of the product.

11: no arithmetic operation.

The second step is to shift the product right one

bit.

Modified Booth Encoding

RESEARCH ARTICLE OPEN ACCESS

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 93 | P a g e

 Fig (1): Modified Booth Encoding Process

 The modified Booth encoding (MBE), or

modified Booth’s algorithm (MBA), was proposed by

O. L. Macsorley in 1961. The encoding method is

widely used to generate the partial products for

implementation of large parallel multipliers, which

adopts the parallel encoding scheme. The basic

principle for the modified Booth encoding can be

described as follows.

 The bits of the multiplier are partitioned

into sub-strings by the 3 adjacent bits and each sub-

string group () corresponds to one of the value in the

set {−2, −1, 0, +1, +2}[30]. This means that the each

three adjacent bits of the multiplier can generate a

single encoding digit, which is called the modified

Booth recoding digit (di). Each MBE blocks can

work in parallel, therefore, all the partial product bits

are generated simultaneously. The parallel encoding

scheme is suitable for parallel multipliers.

Fig (2): Modified Booth encoder truth table

MODIFIED BOOTH RECODED MULTI-ER

 In general, a radix-B ¼ 2b MBE leads to a

reduction of the number of rows to about dn=be

while, on the other hand, it introduces the need to

generate all the multiples of the multiplicand X, at

least from _B=2 _ X to B=2 _ X. As mentioned

above, radix-4 MBE is particularly of interest since,

for radix-4, it is easy to create the multiples of the

multiplicand 0;_X;_2X. In particular, _2X can be

simply obtained by single left shifting of the

corresponding terms _X. It is clear that the MBE can

be extended to higher radices,but the advantage of

getting a higher reduction in the number of rows is

paid for by the need to enerate more multiples of X.

In this paper, we focus our attention on radix-4 MBE,

although the proposed method can be easily extended

to any radix-B MBE.

Fig. (3). Gate-level diagram for partial product

generation using MBE

(a)MBEsignalsgeneration.(b)Partial

productgeneration.

From an operational point of view, it is well

known that the radix-4 MBE scheme consists of

scanning the multiplier operand with a three-bit

window and a stride of two bits (radix-4). For each

group of three bits (y2i+1, y2i, y2i-1), only one

partial product row is generated according to the

encoding in Fig(6) A possible implementation of the

radix-4 MBE and of the corresponding partial

product

generation is shown in Fig. (3), which comes from

a small adaptation. For each partial product row, Fig.

(3a) produces the one, two, and neg signals. These

signals are then exploited by the logic in Fig. (3b),

along with the appropriate bits of the multiplicand, in

order to generate the whole partial product array.

Other alternatives for the implementation of the

recoding and partial product generationcan be found

among others.

As introduced previously, the use of radix-4 MBE

allows for the (theoretical) reduction of the PP rows

to [n /2], with the possibility for each row to host a

multiple of yi x X, with yi Є2 {0;+1;+2}. While it is

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 94 | P a g e

straightforward to generate the positive terms 0, X,

and 2X at least through a left shift of X, some

attention is required to generate the terms -X and -2X

which, as observed in Table 1, can arise from three

configurations of the y2i+1, y2i, and y2i-1 bits. To

avoid computing negative encodings, i.e., -X and -

2X, the two’s complement of the multiplicand is

generally used. From a mathematical point of view,

the use of two’s complement

requires extension of the sign to the leftmost part

of each partial product row, with the consequence of

an extra area overhead. Thus, a number of strategies

for preventing sign extension have been developed.

For instance, the scheme in [1] relies on the

observation that -pp = pp + 1 ¼=pp -1 -2 + 4. The

array resulting from the application of the sign

extension prevention technique to the partial product

array of a 8 x8 MBE multiplier is shown in Fig. 4.

The use of two’s complement requires a neg signal

(e.g., neg0, neg1, neg2, and neg3 in Fig. 4) to be

added in the LSB position of each partial product row

for generating the two’s complement, as needed.

Thus, although for a n xn multiplier, only [n/2] partial

products are generated, the maximum height of the

partial product array is [n/ 2]+ 1.

Fi

g (4) :Application of the sign extension prevention

measure on the partial product array of a 8 x 8 radix-

4 MBE multiplier.

 Fig (5): Two’s complement computation (n =8)

 The case of nxn square multipliers is quite

common, as the case of n that is a power of two.

Thus, we start by focusing our attention on square

multipliers, and then present the extension to the

general case of m x n rectangular multipliers.

The proposed approach is general and, for the sake

of clarity, will be explained through the practical case

of 8 x 8 multiplication (as in the previous figures). As

briefly outlined in the previous sections, the main

goal of our approach is to produce a partial product

array with a maximum height of [n/2] rows, without

introducing any additional delay. Let us consider, as

the starting point, the form of the simplified array as

reported in Fig. 4, for all the partial product rows

except the first one. the first row is temporarily

considered as being split into two subrows, the first

one containing the partial product bits from right to

left) from pp00 to pp80 and the second one with two

bits set at “one” in positions 9 and 8. Then, the bit

neg3 related to the fourth partial product row, is

moved to become a part of the second subrow.

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 95 | P a g e

Fig. (6).Gate-level diagram for the generation of

two’s complement partial product rows

 (a) 3-5 decoder. (b) 4-1 multiplexer

 .

Fig. (7). Partial product array by applying the

two’s complement computation method in to the last

row.

The key point of this “graphical” transformation is

that the second subrow containing also the bit neg3,

can now be easily added to the first subrow, with a

constant short carry propagation of three positions

(further denoted as “3-bits addition”), a value which

is easily shown to be general, i.e., independent of the

length of the operands, for square multipliers. In fact,

with reference to the notation of Fig.(10), we have

that qq90 qq90 qq80 qq70 qq60 = 0 0 pp80 pp70

pp60 + 0 1 1 0 neg3. As introduced above, due to the

particular value of the second operand, i.e., 0 1 1 0

neg3, in , we have observed that it requires a carry

propagation only across the least-significant three

positions, a fact that can also be seen by

theimplementation shown in Fig. (9).

 It is worth observing that, in order not to

have delay penalizations, it is necessary that the

generation of the other rows is done in parallel with

the generation of the first row cascaded by the

computation of the bits qq90 qq90 qq80 qq70 qq60 in

Fig. (8b). In order to achieve this, we must simplify

and differentiate the generation of the first row with

respect to the other rows. We observe that the Booth

recoding for the first row is computed more easily

than for

the other rows, because the y_1 bit used by the

MBE is always equal to zero. In order to have a

preliminary .

. Fig (8): Partial product array after adding the

last neg bit to the first row. (a) Basic idea. (b)

Resulting array.

Fig. (9): Gate-level diagram of the proposed

method for adding the last neg bit in the first row.

In order to have a preliminary analysis which is

possibly independent of technological details, we

refer to the circuits in the following figures:

 Fig. (3), slightly adapted for the partial

product generation using MBE;

 Fig.(9), obtained through manual synthesis

(aimed at modularity and area reduction

without compromising the delay), for the

addition of the last neg bit to the three most

significant bits of the first row;

 Fig.(10), obtained by simplifying Fig. 1

(since, in the first row, it is y2i-1 = 0), for

the partial product generation of the first

row only using MBE; and

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 96 | P a g e

 Fig.(11), obtained through manual synthesis of a

combination of the two parts of Fig. (10) and aimed

at decreasing the delay of Fig.(10) with no or very

small area increase, for the partial product generation

of the first row only using MBE.

 In particular, we observe that, by direct

comparison of Figs. (5) and (12), the generation of

the MBE signals for the first row is simpler, and

theoretically allows for the saving of the delay of

oneNAND3gate. In addition, the implementation in

Fig. (13) has a delay that is smaller than the two parts

of Fig. (12), although it could require a small amount

of additional area. As we see in the following, this

issue hardly has any significant impact on the overall

design, since this extra hardware is used only for the

three most significant bits of the first row, and not for

all the other bits of the array.

Fig. (10): Gate-level diagram for first row partial

product generation.

(a)MBE signals generation. (b) Partial product

generation.

Fig. (11): Combined MBE signals and partial

product generation for the firstrow (improved for

speed).

 The high-level description of our idea is as follows:

1. generation of the three most significant bit

weights of the first row, plus addition of the

last neg bit:possible implementations can

use a replication of three times the circuit of

Fig. 13 (each for the three most significant

bits of the first row), cascaded by the circuit

of Fig. (11) to add the neg signal;

2. parallel generation of the other bits of the

first row: possible implementations can use

instances of the circuitry depicted in Fig.

(12), for each bit of the first row, except for

the three most significant;

3. parallel generation of the bits of the other

rows: possible implementations can use the

circuitry of Fig.(5), replicated for each bit

of the other rows. All items 1 to 3 are

independent, and therefore can be executed

in parallel. Clearly if, as assumed and

expected, item 1 is not the bottleneck (i.e.,

the critical path), then the implementation of

the proposed idea has reached the goal of

not introducing time penalties.

 VERIFICATION AND RESULTS

 Fig (12): multiplier using ripple carry

adder (existing) according to fig3(a)

and fig3(b)

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 97 | P a g e

Fig (13) : multiplier using carry save adder

 Here when we are using carry save adder instead

of ripple carry adder, we are observed that the delay

is further reducing, and also we are observed that the

total area occupied is less when we are using carry

save adder instead of ripple carry adder

 Fig (14) : proposed multiplier using ripple carry
adder

 Fig (15): proposed multiplier using carry save

adder

Here we are observed that in the proposed model of

the multiplier using carry save adder instead of ripple

carry adder we can able to to reduced the delay area

and power.

 These all calculations are tabulated as follows

Fig (16) : Final comparison

From the above table we can concluded that our

proposed model is having less delay, occupied less

space and also consuming less power , and we can

further observed that by using carry save adder

instead of ripple carry adder the overall performance

is further increased. All this calculations are done

using CADENCE tool

LAYOUT OF THE PROPOSED MULTIPLIER

N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 5(Version 7), May 2014, pp.92-98

 www.ijera.com 98 | P a g e

 Fig (17): Final Layout

CONCLUSION
Two’s complement n x n multipliers using

radix-4 Modified Booth Encoding produce [n/2]

partial products but due to the sign handling, the

partial product array has a maximum height of [n /2]+

1. We presented a scheme that produces a partial

product array with a maximum height of [n/2],

without introducing any extra delay in the partial

product generation stage. In the existing scheme

normal ripple carry adder is used to add partial

products but the delay and area is increased so by

introducing the proposed scheme as carry save adder

to add partial products then we can observe the

reduced delay and area as well as performance will

be improved. All these calucations and observations

are done in CADANCE platform. And also we are

used Clock Gating technique.

REFERENCE

[1] M.D. Ercegovac and T. Lang, Digital

Arithmetic. Morgan Kaufmann Publishers,

200

[2] S.K. Hsu, S.K. Mathew, M.A. Anders, B.R.

Zeydel, V.G. Oklobdzija, R.K.

Krishnamurthy, and S.Y. Borkar, “A

110GOPS/ W 16-Bit Multiplier and

Reconfigurable PLA Loop in 90-nm CMOS,”

IEEE J. Solid State Circuits, vol. 41, no. 1,

pp. 256-264, Jan. 2006.

[3] H. Kaul, M.A. Anders, S.K. Mathew, S.K.

Hsu, A. Agarwal, R.K. Krishnamurthy, and

S. Borkar, “A 300 mV 494GOPS/W

Reconfigurable Dual-Supply 4-Way SIMD

Vector Processing Accelerator in 45 nm

CMOS,” IEEE J. Solid State Circuits, vol. 45,

no. 1, pp. 95- 101, Jan. 2010.

[4] M.S. Schmookler, M. Putrino, A. Mather, J.

Tyler, H.V. Nguyen, C. Roth, M. Sharma,

M.N. Pham, and J. Lent, “A Low-Power,

High- Speed Implementation of a PowerPC

Microprocessor Vector Extension,” Proc.

14th IEEE Symp. Computer Arithmetic, pp.

12-19, 1999.

[5] O.L. MacSorley, “High Speed Arithmetic in

Binary Computers,” Proc. IRE, vol. 49, pp.

67-91, Jan. 1961.

[6] L. Dadda, “Some Schemes for Parallel

Multipliers,” Alta Frequenza, vol. 34, pp.

349-356, May 1965.

[7] C.S. Wallace, “A Suggestion for a Fast

Multiplier,” IEEE Trans. Electronic

Computers, vol. EC-13, no. 1, pp. 14-17, Feb.

1964.

[8] D.E. Shaw, “Anton: A Specialized Machine

for Millisecond-Scale Molecular Dynamics

Simulations of Proteins,” Proc. 19th IEEE

Symp. Computer Arithmetic, p. 3, 2009.

[9] J.-Y. Kang and J.-L. Gaudiot, “A Simple

High-Speed Multiplier Design,” IEEE Trans.

Computers, vol. 55, no. 10, pp. 1253-1258,

Oct. 2006.

[10] J.-Y. Kang and J.-L. Gaudiot, “A Fast and

Well-Structured Multiplier,” Proc. Euromicro

Symp. Digital System Design, pp. 508- 515,

Sept. 2004.

