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Abstract    
Two’s complement multipliers are important for a wide range of applications. In this project, we present a 

technique to reduce by one row the maximum height of the partial product array generated by a radix-4 

Modified Booth Encoded multiplier, without any increase in the delay of the partial product generation stage. 

The proposed method can be extended to higher radix encodings, as well as to the proposed approach using 

CSA to add partial products improve the performance by reducing area and delay; the results based on a rough 

theoretical analysis and on logic synthesis showed its efficiency in terms of  both area and delay. And we are 

implementing this on CADENCE Platform in 180 nm technology. And using clock gating technique to reduce 

further delay 
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I. INTRODUCTION 
The MAC(Multiplier and Accumulator Unit) 

is used for image processing and digital signal 

processing (DSP) in a DSP processor. Algorithm of 

MAC is Booth's radix-4 algorithm, wallace tree, 4:2 

CSA, 64bit carry select adder and improves speed. 

MIPS was implemented as micro processors and 

permitted high performance pipeline implementations 

through the use of their simple register oriented 

instruction sets. Although those algorithms ( radix-4 

algorithm, pipelining, etc ) are widely used technique 

for speeding up each part, the MAC on specific 

processor cannot be run at 100% efficiency.  

Due to the reasons of lower speed of MAC, 

MIPS instruction "mul" (multiplication) takes longer 

time than any other instruction in our MIPS 

processor. To improve speed of MIPS, MAC needs to 

be fast and MIPS must have special algorithm for 

"mul" instruction. One of the method we chose was 

to design multi-clock MAC instead of one-clock 

MAC which improved the speed of MIPS. In general, 

the instruction set of MIPS processor includes 

complex works like multiplication and floating point 

operation which has multi execution stage. Therefore, 

system clock of the processor was increased 

efficiently.We applied 2 stage pipelining to the MAC 

to MIPS processor and as a result we were able to get 

the result of matrix multiplication which was used. 

 

 

Booth Encoding  

The Booth encoding, or Booth algorithm, 

was proposed by Andrew D. Booth in 1951  This 

method can be used to multiply two two’s 

complement number without the sign bit extension.  

The operation of Booth encoding consists of two 

major steps [2]: the first one is to take one bit of the 

multiplier, and then to decide whether to add the 

multiplicand according to the current and previous 

bits of the multiplier. This encoding scheme is serial, 

which means that the different value of the 2 bits 

(current and previous bits) corresponds to the 

different operations. The serial encoding scheme is 

usually applied in serial multipliers. The operation 

procedure can be described with the following table.  

00: no arithmetic operation.  

01: adding the multiplicand to the left half of the 

product.  

10: subtracting the multiplicand from the left half 

of the product.  

11: no arithmetic operation.  

The second step is to shift the product right one 

bit.   

 

 

 

 

 

Modified Booth Encoding  
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        Fig (1): Modified Booth Encoding Process 

           

 The modified Booth encoding (MBE), or 

modified Booth’s algorithm (MBA), was proposed by 

O. L. Macsorley in 1961. The encoding method is 

widely used to generate the partial products for 

implementation of large parallel multipliers, which 

adopts the parallel encoding scheme. The basic 

principle for the modified Booth encoding can be 

described as follows.  

 

               The bits of the multiplier are partitioned 

into sub-strings by the 3 adjacent bits and each sub-

string group () corresponds to one of the value in the 

set {−2, −1, 0, +1, +2}[30]. This means that the each 

three adjacent bits of the multiplier can generate a 

single encoding digit, which is called the modified 

Booth recoding digit (di). Each MBE blocks can 

work in parallel, therefore, all the partial product bits 

are generated simultaneously. The parallel encoding 

scheme is suitable for parallel multipliers.  

 

 
 

Fig (2): Modified Booth encoder truth table 

 

MODIFIED BOOTH RECODED MULTI-ER 

              In general, a radix-B ¼ 2b MBE leads to a 

reduction of the number of rows to about dn=be 

while, on the other hand, it introduces the need to 

generate all the multiples of the multiplicand X, at 

least from _B=2 _ X to B=2 _ X. As mentioned 

above, radix-4 MBE is particularly of interest since, 

for radix-4, it is easy to create the multiples of the 

multiplicand 0;_X;_2X. In particular, _2X can be 

simply obtained by single left shifting of the 

corresponding terms _X. It is clear that the MBE can 

be extended to higher radices,but the advantage of 

getting a higher reduction in the number of rows is 

paid for by the need to enerate more multiples of X. 

In this paper, we focus our attention on radix-4 MBE, 

although the proposed method can be easily extended 

to any radix-B MBE. 

 
 

Fig. (3). Gate-level diagram for partial product 

generation using MBE 

(a)MBEsignalsgeneration.(b)Partial 

productgeneration. 

 

From an operational point of view, it is well 

known that the radix-4 MBE scheme consists of 

scanning the multiplier operand with a three-bit 

window and a stride of two bits (radix-4). For each 

group of three bits (y2i+1, y2i, y2i-1), only one 

partial product row is generated according to the 

encoding in Fig(6) A possible implementation of the 

radix-4 MBE and of the corresponding partial 

product 

generation is shown in Fig. (3), which comes from 

a small adaptation. For each partial product row, Fig. 

(3a) produces the one, two, and neg signals. These 

signals are then exploited by the logic in Fig. (3b), 

along with the appropriate bits of the multiplicand, in 

order to generate the whole partial product array. 

Other alternatives for the implementation of the 

recoding and partial product generationcan be found 

among others. 

As introduced previously, the use of radix-4 MBE 

allows for the (theoretical)  reduction of the PP rows 

to [n /2], with the possibility for each row to host a 

multiple of yi x X, with yi Є2 {0;+1;+2}. While it is 
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straightforward to generate the positive terms 0, X, 

and 2X at least through a left shift of X, some 

attention is required to generate the terms -X and -2X 

which, as observed in Table 1, can arise from three 

configurations of the y2i+1, y2i, and y2i-1 bits. To 

avoid computing negative encodings, i.e., -X and -

2X, the two’s complement of the multiplicand is 

generally used. From a mathematical point of view, 

the use of two’s complement 

requires extension of the sign to the leftmost part 

of each partial product row, with the consequence of 

an extra area overhead. Thus, a number of strategies 

for preventing sign extension have been developed. 

For instance, the scheme in [1] relies on the 

observation that -pp = pp + 1 ¼=pp -1 -2 + 4. The 

array resulting from the application of the sign 

extension prevention technique  to the partial product 

array of a 8 x8 MBE multiplier  is shown in Fig. 4. 

The use of two’s complement requires a neg signal 

(e.g., neg0, neg1, neg2, and neg3 in Fig. 4) to be 

added in the LSB position of each partial product row 

for generating the two’s complement, as needed. 

Thus, although for a n xn multiplier, only [n/2] partial 

products are generated, the maximum height of the 

partial product array is [n/ 2]+ 1. 

Fi

g (4) :Application of the sign extension prevention 

measure on the partial product array of a 8 x 8 radix-

4 MBE    multiplier. 

 

 
 

   Fig (5):   Two’s complement computation (n =8) 

 

          The case of nxn square multipliers is quite 

common, as the case of n that is a power of two. 

Thus, we start by focusing our attention on square 

multipliers, and then present the extension to the 

general case of m x n rectangular multipliers. 

The proposed approach is general and, for the sake 

of clarity, will be explained through the practical case 

of 8 x 8 multiplication (as in the previous figures). As 

briefly outlined in the previous sections, the main 

goal of our approach is to produce a partial product 

array with a maximum height of [n/2] rows, without 

introducing any additional delay. Let us consider, as 

the starting point, the form of the simplified array as 

reported in Fig. 4, for all the partial product rows 

except the first one. the first row is temporarily 

considered as being split into two subrows, the first 

one containing the partial product bits from right to 

left) from pp00 to pp80 and the second one with two 

bits set at “one” in positions 9 and 8. Then, the bit 

neg3 related to the fourth partial product row, is 

moved to become a part of the second subrow.  
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Fig. (6).Gate-level diagram for the generation of 

two’s complement partial product rows  

        (a) 3-5 decoder. (b) 4-1 multiplexer 

 

 
 . 

Fig. (7). Partial product array by applying the 

two’s complement computation method in to the last 

row. 

 

The key point of this “graphical” transformation is 

that the second subrow containing also the bit neg3, 

can now be easily added to the first subrow, with a 

constant short carry propagation of three positions 

(further denoted as “3-bits addition”), a value which 

is easily shown to be general, i.e., independent of the 

length of the operands, for square multipliers. In fact, 

with reference to the notation of Fig.(10), we have 

that qq90 qq90 qq80 qq70 qq60 = 0 0 pp80 pp70 

pp60 + 0 1 1 0 neg3. As introduced above, due to the 

particular value of the second operand, i.e., 0 1 1 0 

neg3, in , we have observed that it requires a carry 

propagation only across the least-significant three 

positions, a fact that can also be seen by 

theimplementation shown in Fig. (9).  

           It is worth observing that, in order not to 

have delay penalizations, it is necessary that the 

generation of the other rows is done in parallel with 

the generation of the first row cascaded by the 

computation of the bits qq90 qq90 qq80 qq70 qq60 in 

Fig. (8b). In order to achieve this, we must simplify 

and differentiate the generation of the first row with 

respect to the other rows. We observe that the Booth 

recoding for the first row is computed more easily 

than for 

the other rows, because the y_1 bit used by the 

MBE is always equal to zero. In order to have a 

preliminary . 

.         Fig (8):   Partial product array after adding the 

last neg bit to the first row. (a) Basic idea. (b) 

Resulting array. 

 

 
 

Fig. (9): Gate-level diagram of the proposed 

method for adding the last neg bit in the first row. 

 

 

In order to have a preliminary  analysis which is 

possibly independent of technological details, we 

refer to the circuits in the following figures:  

 Fig. (3), slightly adapted for the partial 

product generation using MBE; 

 Fig.(9), obtained through manual synthesis 

(aimed at modularity and area reduction 

without compromising the delay), for the 

addition of the last neg bit to the three most 

significant bits of the first row;  

 Fig.(10), obtained by simplifying Fig. 1 

(since, in the first row, it is y2i-1 = 0), for 

the partial product generation of the first 

row only using MBE; and  
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 Fig.(11), obtained through manual synthesis of a 

combination of the two parts of  Fig. (10) and aimed 

at decreasing the delay of Fig.(10) with no or very 

small area increase, for the partial product generation 

of the first row only using MBE.  

                   In particular, we observe that, by direct 

comparison of Figs. (5) and (12), the generation of 

the MBE signals for the first row is simpler, and 

theoretically allows for the saving of the delay of 

oneNAND3gate. In addition, the implementation in 

Fig. (13) has a delay that is smaller than the two parts 

of Fig. (12), although it could require a small amount 

of additional area. As we see in the following, this 

issue hardly has any significant impact on the overall 

design, since this extra hardware is used only for the 

three most significant bits of the first row, and not for 

all the other bits of the array.   

 

 
Fig. (10): Gate-level diagram for first row partial 

product generation. 

(a)MBE signals generation. (b) Partial product 

generation. 

 

 
Fig. (11): Combined MBE signals and partial 

product generation for the firstrow (improved for 

speed). 

 

  The high-level description of our idea is as follows: 

 

1. generation of the three most significant bit 

weights of the first row, plus addition of the 

last neg bit:possible implementations can 

use a replication of three times the circuit of 

Fig. 13 (each for the three most significant 

bits of  the first row), cascaded by the circuit 

of Fig. (11) to add the neg signal; 

2.  parallel generation of the other bits of the 

first row: possible implementations can use 

instances of the circuitry depicted in Fig. 

(12), for each bit of the first row, except for 

the three most significant;  

3.  parallel generation of the bits of the other 

rows: possible implementations can use the 

circuitry of  Fig.(5), replicated for each bit 

of the other rows. All items 1 to 3 are 

independent, and therefore can be executed 

in parallel. Clearly if, as assumed and 

expected,  item 1 is not the bottleneck (i.e., 

the critical path), then the implementation of 

the proposed idea has reached the goal of 

not introducing time penalties. 

 

   VERIFICATION AND RESULTS 

                

 
   Fig (12): multiplier using ripple carry 

adder          (existing ) according to fig3(a) 

and fig3(b) 

 

 



N.V. Siva Rama Krishna .T et al Int. Journal of Engineering Research and Applications   www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 5( Version 7), May 2014, pp.92-98 

 www.ijera.com                                                                                                                                97 | P a g e  

 
 

Fig (13) : multiplier using carry save adder 

 

 Here when we are using carry save adder instead 

of ripple carry adder, we are observed that the delay 

is further reducing, and also we are observed that the 

total area occupied is less when we are using carry 

save adder instead of ripple carry adder 

 

 
  
 Fig (14) : proposed multiplier using ripple carry 
adder 
 

 
 
    Fig (15): proposed multiplier using carry save 

adder 

 

Here we are observed that in the proposed model of 

the multiplier using carry save adder instead of ripple 

carry adder we can able to to reduced the delay area 

and power. 

 These all calculations are tabulated as follows 

          
Fig (16) : Final comparison 

 

From the above table we can concluded that our 

proposed model is having less delay, occupied less 

space and also consuming less power , and we can 

further observed that by using carry save adder 

instead of ripple carry adder the overall performance 

is further increased. All this calculations are done 

using CADENCE tool 

 

LAYOUT OF THE PROPOSED MULTIPLIER 
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                        Fig (17): Final Layout 

 

CONCLUSION 
Two’s complement n x n multipliers using 

radix-4 Modified Booth Encoding produce [n/2] 

partial products but due to the sign handling, the 

partial product array has a maximum height of [n /2]+ 

1. We presented a scheme that produces a partial 

product array with a maximum height of [n/2], 

without introducing any extra delay in the partial 

product generation stage. In the existing scheme 

normal ripple carry adder is used  to add partial 

products but the delay and area is increased  so by 

introducing the proposed scheme as carry save adder 

to add partial products then we can observe the 

reduced delay and  area as well as performance will 

be  improved. All these calucations and observations 

are done in CADANCE platform. And also we are 

used Clock Gating technique. 
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